31DEC

Welcome To Mediterr J Med Res

Manuscripts are accepted for consideration with understanding that they are represent original material and they are not being considered for publication elsewhere. The editors welcome the submission of relevant articles for editorial consideration. Manuscripts and all scientific and professional data should be addressed to Editor-in-Cheif (Fmosherif@yahoo.com).

Mediterranean Journal of Medical Research
https://mrj.org.ly/article/doi/10.5281/zenodo.17188277

Mediterranean Journal of Medical Research

Original article

Cucurbita pepo used in the folkloric treatment of malaria, mediates anti-inflammatory, anti-nociceptive, antipyretic, and immunomodulatory effects in murine models

Chinelo S. Ezeani, Ifeoma C. Ezenyi, Oghenetega T. Oweh, Bulus Adzu, Charles O. Okoli, Theophine C. Akunne

Downloads: 1
Views: 317

Abstract

Malaria is an infectious disease that presents fever, inflammation of joints, vomiting, arthralgia, abdominal cramps, splenomegaly, hepatomegaly, and severe anemia in children. This study was undertaken to investigate the anti-inflammatory, anti-nociceptive, antipyretic, and immunomodulatory properties of Cucurbita pepo and its use as an adjunct in the treatment of malaria in Nigeria. The dried plant material (aerial parts) was extracted by cold maceration using 70.0% ethanol. The extract was characterized by GC-MS analysis and subjected to pharmacological evaluation in systemic and topical inflammation, acetic acid-induced nociception, and lipopolysaccharide-induced pyrexia. Its effect on the primary humoral immune response to sheep red blood cells was also assessed. Cucurbita pepo extract (CpE) revealed its major components to be palmitic acids (47.4%), 9-octadecanoic acid (10.8%), and 4-coumaric acid (5.3%). The extract suppressed paw inflammation in a dose-dependent manner, producing a significant effect at a dose of 900 mg/kg. CpE at 0.25, 1.25, and 2.5 mg inhibited topical inflammation by 17.2% to 39.0% and lymphocyte infiltration associated with the inflammatory response. At a dose of 900 mg/kg, CpE significantly reduced hyperthermia, and its effect was comparatively higher than that of indomethacin. The extract inhibited writhing response to abdominal pain, although its effect was statistically insignificant. Treatment with the extract also stimulated the immune response, evidenced by an increase in hemagglutination antibody titer and relative spleen weight in CpE-treated groups. Particularly, the extract evoked a stronger immunostimulatory response compared to levamisole, a standard immunostimulatory agent. These findings provide evidence to support the use of C. pepo in the treatment of symptoms associated with malaria.

Keywords

Antimalarial, Cucurbita pepo, inflammation, immunomodulation, Nigeria, pyrexia

References

  1. Saroj P, Verma M, Jha KK, Manju P. An overview on immunomodulation. Journal of Advanced Scientific Research. 2012; 3(1): 7-12. doi: Nil.
  2. Ibrahim B, Sowemimo A, Rooyen A, Van de Venter M. Anti-inflammatory, analgesic and antioxidant activities of Cyathula prostrata (Linn.) Blume (Amarnthaceae). Journal of Ethnopharmacology. 2012; 141(1): 282-289. doi: 10.1016/j.jep.2012.02.032
  3. Rang HP, Dale MM. Local hormone inflammation and allergy. In: Pharmacology. 5th ed. Churchill Livingstone UK. 1999. ISBN: 0443075603, 9780443075605.
  4. Kinne RW, Rolf B, Bruno S, Palombo-Kinne E, Gerd-R B. Macrophages in rheumatoid arthritis. Arthritis Research and Therapy. 2000; 2(3): 189-202. doi: 10.1186/ar86
  5. Yu T, Jaehwi L, Yong GL, Se EB, Min HK, Eun-Hwa S, et al. In vitro and in vivo anti-inflammatory effects of ethanol extract from Acer tegmentosum. Journal of Ethnopharmacology. 2010; 128(1): 139-147. doi: 10.1016/j.jep. 2009.12.042
  6. Snow RW. Global malaria eradication and the importance of Plasmodium falciparum epidemiology in Africa2015; BMC Medicine. 13: 23 doi: 10.1186/s12916-014-0254-7
  7. Garcia LS.  Malaria. Clinics in Laboratory Medicine. 2012; 30(1): 93-129. doi: 10.1016/j.cll.2009.10.001
  8. Fletcher TE, Beeching NJ.  Malaria. BMJ Military Health. 2013; 159(3): 158-166. doi: 10.1136/jramc-2013-000112
  9. Akhlaq M, Khaleeq Alum M, Mehboob Alam M. Anti-inflammatory potential of medicinal plants. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2022; 2(1): 13-21. doi: 10.5281/zenodo.6399381
  10. Abbas AK, Lichtman A, Pillai S. Basic immunology: Functions and disorders of the immune system. 6th Ed. Elsevier, 2019. ISBN-13: 978-0323549431.
  11. Ahmed R, Khandaker MS. Natural products as of nutraceuticals treatment for neurological disorders: An overview. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2025; 5(2): 62-69. doi: 10.5281/zenodo. 15226021
  12. Bazine HA, Shlaka MA, Sherif FM. A neuropharmacological profile of lycium schweinfurthii (solanaceae) methanolic extract in mice. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2023; 3(1): 43-50. doi: 10.5281/zenodo.7771364
  13. Obel MA, Asfoor TAT. The potential of endemic medicinal plants in the central regions of Abyan Governorate, Yemen for sustainable pharmaceutical applications. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2025; 5(3): 46-51. doi: 10.5281/zenodo.16537815
  14. Saralaya SS, Kanakamajalu S. A progressive review on the synthesis of Atovaquone (an anti-malarial drug), empowered by the critical examination of prior-art disclosures. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2023; 3(4): 33-53. doi: 10.5281/zenodo.10208022
  15. Odoh UE, Uzor PF, Eze CL, Akunne TC, Onyegbulam CM, Osadebe PO. Medicinal plants used by the people of Nsukka Local Government Area, south-eastern Nigeria for the treatment of malaria: An ethnobotanical survey. Journal of Ethnopharmacology. 2018; 218: 1-15. doi: 10.1016/j.jep.2018.02.034
  16. Ezeani C, Ezenyi I, Erhunse N, Sahal D, Akunne T, Okoli C. Assessment of antimalarial medicinal plants used in Nigeria ethnomedicine reveals antimalarial potential of C. pepo leaf extract. Heliyon. 2022; 8(7): e09916. doi: 10.1016/j.heliyon.2022.e09916
  17. Sayed H, Seif A. Ameliorative effect of pumpkin oil (Cucurbita pepo L.) against alcohol-induced hepatotoxicity and oxidative stress in albino rats. Beni-Suef Universal Journal of Basic Applied Science. 2014; 3(3): 178-185. doi: 10.1016/j.bjbas.2014.08.001
  18. Pinu FR, Edwards PJB, Jouanneau S, Kilmartin PA, Gardner RC, Villas-Boas SG. Sauvignon blanc metabolomics: grape juice metabolites affecting the development varietal thiols and other aroma compounds in wines. Metabolomics. 2014; 10: 556-573. doi: 10.1007/s11306-013-0615-9
  19. National Institutes of Health. Guide for the Care and Use of Laboratory Animals. 8th Ed. 2011 Available at: https://grants.nih.gov/grants/olaw/guide-for-the-care-and-use-of-laboratory-animals.pdf
  20. Adzu B, Amizan MB, Okhale S. Evaluation of antinociceptive and anti-inflammatory activities of standardized root bark extract of Xeromphis nilota. Journal of Ethnopharmacology. 2014; 158 Pt A: 271-5. doi: 10.1016/j.jep.2014. 10.030.
  21. Santos FA, Rao VS. A study of the antipyretic effect of quinine, an alkaloid effective against cerebral malaria, on fever-induced bacterial endotoxin and yeast in rats. The Journal of Pharmacy and Pharmacology. 2011; 50(2): 225-229. doi: 10.1111/j.2042-7158
  22. Yu Y, Correll PH, Vanden Heuvel JP. Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: evidence for a PPAR gamma dependent mechanism. Biochimica et Biophysica Acta. 2002; 1581(3): 89-99. doi: 10.1016/s1388-1981(02)00126-9
  23. Luceri C, Guglielmi F, Lodovici M, Giannini L, Meesserini L, Dalara P. Plant phenolic-4-Coumaric acid protects against intestinal inflammation in rats. Scandinavian Journal of Gastroenterology. 2004; 39(11): 1128- 1133. doi: 10.1080/00365520410007908
  24. Okara E, Ogidi OI, Bunu EM. An In vivo study of the anti-inflammatory activity of ethanolic extract of Pistia stratiotes (L) medicinal plant. Mediterranean Journal of Medical Research. 2025; 2: 98-103. doi: 10.5281/zenodo. 15839127
  25. Ferrero-Miliani L, Nielson OH, Andersen PS, Girardin SE. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1β generation. Clinical and Experimental Immunology. 2007; 147(2): 227-235. doi: 10.1111/ j.1365-2249.2006.03261.x
  26. Moody JO, Robert VA, Connolly JD, Houghton PJ. Anti-inflammatory activities of the methanol extracts and an isolated furanoditerpene constituent of Sphnocentrum jollyanum Pierre (Menispermacea). Journal of Ethnopharmacology. 2006; 104(1-2): 87-91. doi: 10.1016/j.jep.2005.08.051
  27. Rajnarayana K, Sripal Reddy M, Chaluvadi MR. Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian Journal of Pharmacology. 2001; 33: 2-16. Corpus ID: 86408173.
  28. Vincenzi F, Targa M, Corciulo C, Aghazadeh T, Merighi S, Gess S, Saponaro G, Baraldi PG, Borea PA, Varani K (2013). Antinociceptive effects of the selective CB2 agonist MT178 in inflammatory and chronic rodent pain models. Pain. 2013; 154(6): 864-873. doi: 10.1016/j.pain.2013.02.007
  29. Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, et al. Mast cells and inflammation. Biochimica et Biophysica Acta. 2012; 1822(1): 21-33. doi: 10.1016/j.bbadis.2010.12.014
  30. Tore F, Tuncel N. Mast cells: Target and source of neuropeptides. Current Pharmaceutical Design. 2009; 15(29): 3433-3445. doi: 10.2174/138161209789105036
  31. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annual Revised Journal of Pharmacology and Toxicology. 1998; 38: 97-120. doi: 10.1146/annurev.pharmtox.38.1.97
  32. Mitchell JA, Akarasereenont P, Themermann C, Flower RJ, Vane JR. Selectivity of non-steroidal anti-inflammatory drugs are inhibitors of constitutive and inducible cyclooxygenase. Proceedings of the National Academy of Science U.S.A. 1993; 90(24): 11693-11697. doi: 10.1073/pnas.90.24.11693
  33. Alam MA, Subhan N, Abdul AM, Alam MS, Sarder M, Nahar L, Sarker SD. Antinociceptive and anti-inflammatory properties of Ruellia tuberosa. Pharmaceutical Biology. 2009; 47(3): 209-214. doi: 10.1080/13880200802434575
  34. Loganayaki N, Siddhuraju P, Manian S. Antioxidant, anti-inflammatory and anti-nociceptive effects of Ammannia baccifera L. (Lythracceae), a folklore medicinal plant. Journal of Ethnopharmacology. 2012; 140(2): 230-233. doi: 10.1016/j.jep.2012.01.001
  35. Lamien CE, Guissou IP, Nacoulma OG. Anti-inflammatory, analgesic and antipyretic activities of Dicliptera verticillate, International Journal of Pharmacology. 2006; 2(4): 435-438. doi: 10.3923/ijp.2006.435.438
  36. Saeed MK, Deng Y, Dai R, Li W, Yu Y, Iqbal Z. Appraisal of antinociceptive and anti-inflammatory potential of extract and fractions from the leaves of Torreya grandis Fort Ex Lindl. Journal of Ethnopharmacology. 2010; 127: 414-418. doi: 10.1016/j.jep.2009.10.024
  37. Saper CB, Breder CD. The neurologic basis of fever. The New England Journal of Medicine. 1994; 330(26): 1880-1886. doi: 10.1056/NEJM199406303302609
  38. Ganguly A, AI Mahmud Z, Nasir Uddin MM, Abdu- Rahma SM. In vivo anti-inflammatory and anti-pyretic activities of Manilkara zapota leaves in albino Wistar rats. Asian Pacific Journal of Tropical Disease. 2013; 3(4): 301-307. doi: 10.1016/S2222-1808(13)60073-0
  39. Cao S, Zhang X, Edwards JP, Mosser DM. NF-kappaB1 (p50) homodimers differentially regulate pro- and anti-inflammatory cytokines in macrophages. Journal of Biological Chemistry. 2006; 281(36): 26041-26050. doi: 10.1074/jbc.M602222200
  40. Anderson CF, Mosser DM. Cutting edge: biasing immune responses by directing antigen to macrophage Fcγ receptors. Journal of Immunology. 2002; 168(8): 3697-3701. doi: 10.4049/jimmunol.168.8.3697
  41. Damre AS, Gokhale AB, Phadke AS, Kulkarni KR, Saraf MN. Studies on the immunomodulatory activity of flavonoidal fraction of Tephrosia purpurea. Fitoterapia. 2003; 74(3): 257-261. doi: 10.1016/s0367-326x(03)00042-x

Submitted date:
03/13/2025

Reviewed date:
09/06/2025

Accepted date:
09/15/2025

68d32872a953952aea499f87 mjpe Articles
Links & Downloads

Mediterr J Med Res

Share this page
Page Sections