Molecularly targeted theranostics in neurology and neuroinflammation: Current status and future directions
Vijayan K., Vishalini S., Vanitha S., Allimalarkodi S., Revathi S.
Abstract
By combining imaging and targeted therapy into a single platform, theranostics, an emerging field in neurological diseases, has the potential to completely transform diagnosis and treatment. Alzheimer's disease, Parkinson's disease, multiple sclerosis, glioblastoma, epilepsy, and other neurological conditions pose a number of complex challenges, such as difficulties in early diagnosis, restrictions in the delivery of drugs across the blood-brain barrier, and a lack of real-time therapeutic monitoring. Molecular imaging methods, such as PET and MRI, are utilized in theranostic approaches, along with drug delivery systems based on nanotechnology that can cross the blood brain barrier. Functionalized nanoparticles improve personalized medicine by enabling accurate targeting and concurrent imaging and treatment. Amyloid-PET tracers and therapeutic agent-loaded nanocarriers are two disease-specific theranostic approaches that have shown promise in preclinical and clinical research. For increased accuracy and effectiveness, future directions focus on combining state-of-the-art technologies, such as artificial intelligence and CRISPR-Cas9 gene editing. Theranostics holds revolutionary potential for managing neurological disorders by enabling early detection, personalized therapy, and dynamic treatment monitoring, despite translational challenges related to blood-brain barrier penetration, safety, regulatory barriers, and cost. To advance clinical outcomes in neurology and move these innovations from the bench to the bedside, more interdisciplinary research is essential.
Keywords
References
- Sherif FM, Ahmed SS, Erijsson L. Brain aminobutyrate aminotransferase activity in Alzheimer's disease Neurodegeneration 1995; 4(1): 114-115. doi: 10.1177/070674370404900
- Giau VV, An SSA, Bagyinszky E, Kim SY. Gene panels and primers for next-generation sequencing studies on neurodegenerative disorders. Molecular, Cellular, and Toxicology. 2015; 11(2): 89-143. doi: 10.1007/s13273-015-0011-9
- Aryal M, Arvanitis CD, Alexander PM, McDannold N. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system. Advanced Drug Delivery Reviews. 2014; 72: 94-109. doi: 10.1016/j.addr.2014.01.008
- Yadagiri P, Katakam P, Elosta SG, Adiki SK. Precision medicine: Recent progress in cancer therapy. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2021; 1(1): 5-11. doi: 10.5281/zenodo.5171379
- Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nature Medicine. 2019; 25(1): 24-29. doi: 10.1038/s41591-018-0316-z
- Ossenkoppele R, Schonhaut DR, Schöll M, Lockhart SN, Ayakta N, Baker SL, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. Brain. 2016; 139(Pt5): 1551-1567. doi: 10.1093/ brain/aww027
- Loane C, Politis M. Positron emission tomography neuroimaging in Parkinson's disease. American Journal of Translational Research. 2011; 3(4): 323-341. PMID: 21904653; PMCID: PMC3158735.
- Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, et al. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Letters. 2005; 5(6): 1003-1008. doi: 10.1021/nl0502569
- Bennett KM, Jo J-I, Cabral H, Bakalova R, Aoki I. MR imaging techniques for nano-pathophysiology and theranostics. Advanced Drug Delivery Reviews. 2014; 74: 75-94. doi: 10.1016/j.addr.2014.04.007
- Huang P, Zhang M. Magnetic resonance imaging studies of neurodegenerative disease: From methods to translational research. Neuroscience Bulletin. 2022; 39(1): 99-112. doi: 10.1007/s12264-022-00905-x
- Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. Journal of Control Release. 2016; 235: 34-47. doi: 10.1016/j.jconrel.2016.05.044
- Trac N, Chung EJ. Overcoming physiological barriers by nanoparticles for intravenous drug delivery to the lymph nodes. Experimental Biology and Medicine. 2021; 246(22): 2358-2371. doi: 10.1177/15353702211010762
- Tosi G, Duskey JT, Kreuter J. Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier. Expert Opinion on Drug Delivery. 2020;17(1): 23-32. doi: 10.1080/17425247.2020.1698544
- Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, et al. Multifunctional polymeric micelles as cancer-targeted, MRI ultrasensitive drug delivery systems. Nano Letters. 2006; 6(11): 2427-2430. doi: 10.1021/nl061412u
- Tosi G, Duskey JT, Kreuter J. Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier. Expert Opinion on Drug Delivery. 2019; 17(1): 23-32. doi. 10.1080/17425247.2020.1698544
- Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nature Materials. 2013; 12(11): 991-1003. doi: 10.1038/nmat3776
- Ashrafian H, Zadeh EH, Khan RH. Inhibition of amyloid beta and tau tangle formation. International Journal of Biological Macromolecules. 2021; 167: 382-394. doi: 10.1016/j.ijbiomac.2020.11.192
- Congdon EE, Sigurdsson EM. Tau-targeting therapies for Alzheimer's disease. Nature Reviews Neurology. 2018; 14(7): 399-415. doi: 10.1038/s41582-018-0013-z
- Mcgeer PL, Rogers J. Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology. 1992; 42(2): 447-449, doi: 10.1212/WNL.42.2.447
- Dong-Chen X, Yong C, Yang X, et al. Signaling pathways in Parkinson’s disease: Molecular mechanisms and therapeutic interventions. Sig Transduct Target Ther. 8: 73(2023). doi. 10.1038/s41392-023-01353-3
- Yadav VK, Dhanasekaran S, Choudhary N, Nathiya D, Thakur V, Gupta R, et al. Recent advances in nanotechnology for Parkinson's disease: Diagnosis, treatment, and future perspectives. Frontiers in Medicine. 2025; 12: 1535682. doi: 10.3389/fmed.2025.1535682
- Young IR, Hall AS, Pallis CA, Legg NJ, Bydder GM, Steiner RE. Nuclear magnetic resonance imaging of the brain in multiple sclerosis. Lancet. 1981; 2: 1063-1066. doi: 10.1016/s0140-6736(81)91273-3
- Sahraian MA, Eshaghi A. Role of MRI in diagnosis and treatment of multiple sclerosis. Clinical Neurology and Neurosurgery. 2010; 112(7): 609-615. doi: 10.1016/j.clineuro.2010.03.022
- Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurology. 2005; 58(6): 840-846. doi: 10.1002/ana.20703
- Davis ME. Glioblastoma: Overview of disease and treatment. Clinical Journal of Oncology Nursing. 2016; 20(5Suppl): S2-8. doi: 10.1188/16.CJON.S1.2-8
- Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, extent of resection, and survival. Journal of Neurosurgery. 2001; 95(2): 190-198. doi: 10.3171/jns.2001.95.2.0190
- Sanai N, Berger MS. Glioma extent of resection and its impact on patient outcome. Neurosurgery. 2008; 62(4): 753-764. doi: 10.1227/01.neu.0000318159.21731.cf
- Kumlien E, Sherif FM, Ge L, Oreland L. Platelet and brain GABA-transaminase and monoamine oxidase activities in patients with complex partial seizures. Epilepsy Research. 1995; 20: 161-170. doi: 10.1016/0920-1211(94)00069-9
- Berg AT, Millichap JJ. The 2010 revised classification of seizures and epilepsy. Continuum (Minneap, Minn) 2013; 19(3): 571-597. doi: 10.1212/01.CON.0000431377.44312.9e
- Davis R, Dalmau J. Autoimmunity, seizures, and status epilepticus. Epilepsia. 2013; 54: 46-49.
- Spencer SS. The relative contributions of MRI SPECT and PET imaging in epilepsy. Epilepsia. 1994; 35: S72-S89. doi: 10.1111/j.1528-1157.1994.tb05990.x
- Won HJ, Chang KH, Cheon JE, Kim HD, Lee DS, Han MH, et al. Comparison of MR imaging with PET and ictal SPECT in 118 patients with intractable epilepsy. AJNR American Journal of Neuroradiology. 1999; 20(4): 593-599. PMID: 10319968; PMCID: PMC7056008.
- Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE official report: A practical clinical definition of epilepsy. Epilepsia. 2014; 55(4): 475-482. doi: 10.1111/epi.12550
- Bhokisham N, Laudermilch E, Traeger LL, Bonilla TD, Ruiz-Estevez M, Becker JR. CRISPR-Cas System: The Current and Emerging Translational Landscape. Cells. 2023;12(8): 1103. doi: 10.3390/cells12081103
- Meng H, Nan M, Li Y, Ding Y, Yin Y, Zhang M. Application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer. Frontiers in Endocrinology. 2023; 14: 1148412. doi: 10.3389/ fendo.2023.114812
- Vykhodtseva N, McDannold N, Hynynen K. Progress and problems in the application of focused ultrasound for blood-brain barrier disruption. Ultrasonics. 2008; 48: 279-296. doi: 10.1016/j.ultras.2008.04.004
- Belge Bilgin G, Bilgin C, Burkett BJ, Orme JJ, Childs DS, Thorpe MP, et al. Theranostics and artificial intelligence: New frontiers in personalized medicine. Theranostics. 2024; 14(6): 2367-2378. doi: 10.7150/thno.94788
- Hawkins B, Davis T. The blood-brain barrier/neurovascular unit in health and disease. Pharmacological Reviews. 2005; 57: 173-185. doi: 10.1124/pr.57.2.4
- Nizamuddin SFS, Ikramuddin M, Dhore NS. Artificial Intelligence in pharmaceutical sciences: Transforming drug discovery, formulation, and manufacturing. Mediterranean Journal of Medical Research. 2025; 2(4): 269-275. doi: 10.5281/zenodo.17945149
- Giammarile F, Paez D, Zimmermann R, Cutler CS, Jalilian A, Korde A, et al. Production and regulatory issues for theranostics. Lancet Oncology. 2024; 25(6): e260-e269. doi: 10.1016/S1470-2045(24)00041-X
- Herrmann K, Schwaiger M, Lewis JS, Solomon SB, McNeil BJ, Baumann M, et al. Radiotheranostics: A roadmap for future development. Lancet Oncology. 2020; 21: e146-56. doi: 10.1016/S1470-2045(19)30821-6
Submitted date:
01/07/2026
Reviewed date:
02/03/2026
Accepted date:
02/11/2026
Publication date:
02/14/2026
